

THE DATASHEET OF 83908AGI-02LFT

GENERAL DESCRIPTION

The 83908I-02 is a low skew, high performance 1-to-8 Crystal Oscillator//Crystal-to-LVCMOS fanout buffer from IDT. The 83908I-02 has selectable single-ended clock or two crystal-oscillator inputs. There is an output enable to disable the outputs by placing them into a high-impedance state.

Guaranteed output and part-to-part skew characteristics make the 83908I-02 ideal for those applications demanding well defined performance and repeatability.

FEATURES

- Eight LVCMOS/LVTTL outputs , 19Ω typical output impedance @ $V_{DD} = V_{DDD} = 3.3V$
- Two Crystal oscillator input pairs One LVCMOS/LVTTL clock input
- Crystal input frequency range: 10MHz 40MHz
- Output frequency: 200MHz (typical)
- Output Skew: 70ps (maximum) @ V_{DD} = V_{DDD} = 3.3V
- Part-to-part skew: 700ps (maximum) @ V_{DD} = V_{DDD} = 3.3V
- RMS phase jitter @ 25MHz output using a 25MHz crystal (12kHz 10MHz): 0.39ps (typical) @ $V_{DD} = V_{DDD} = 3.3V$

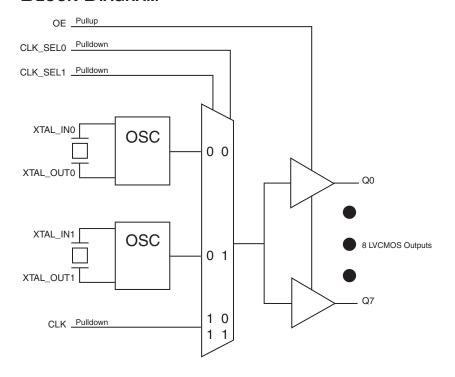
Offset	Noise Power
100Hz	111.4 dBc/Hz
1kHz	139.9 dBc/Hz
10kHz	157.3 dBc/Hz
100kHz	157.5 dBc/Hz

• Supply Voltage Modes:

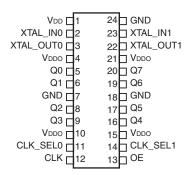
(Core/Output)

3.3V/3.3V

3.3V/2.5V


3.3V/1.8V

2.5V/2.5V


2.5V/1.8V

- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

BLOCK DIAGRAM

PIN ASSIGNMENT

83908I-02 24-Lead, 173-MIL TSSOP 4.4mm x 7.8mm x 0.925mm body package G Package Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Т	уре	Description
1	V _{DD}	Power		Power supply pin.
2, 3	XTAL_IN0, XTAL_OUT0	Input		Crystal oscillator interface. XTAL_IN0 is the input. XTAL_OUT0 is the output.
4, 10, 15, 21	V _{DDO}	Power		Output supply pins.
5, 6, 8, 9, 16, 17, 19, 20	Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7	Output		Single-ended clock outputs. LVCMOS/LVTTL interface levels.
7, 18, 24	GND	Power		Power supply ground.
11, 14	CLK_SEL0, CLK_SEL1	Input	Pulldown	Clock select inputs. See Table 3, Input Reference Function Table. LVCMOS / LVTTL interface levels.
12	CLK	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
13	OE	Input	Pullup	Output enable. When LOW, outputs are in HIGH impedance state. When HIGH, outputs are active. LVCMOS / LVTTL interface levels.
22, 23	XTAL_OUT1, XTAL_IN1	Input		Crystal oscillator interface. XTAL_IN1 is the input. XTAL_OUT1 is the output.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C	Input Capacitance			4		pF
R	Input Pullup Resistor			51		kΩ
R	Input Pulldown Resistor			51		kΩ
	B	V _{DDO} = 3.465V		7		pF
C _{PD}	Power Dissipation Capacitance (per output)	V _{DDO} = 2.625V		7		pF
	(per datpaty	$V_{_{\rm DDO}} = 2V$		6		pF
		$V_{_{DDO}} = 3.3V \pm 5\%$		19		Ω
R _{out}	Output Impedance	$V_{_{DDO}} = 2.5V \pm 5\%$		21		Ω
		$V_{DDO} = 1.8V \pm 0.2V$		32		Ω

TABLE 3. INPUT REFERENCE FUNCTION TABLE

Contro	l Inputs	Pot	ference			
CLK_SEL1	CLK_SEL0	nelelelice				
0	0	XTAL0 enabled (default)	t) XTAL1 disabled			
0	1	XTAL1 enabled	XTAL0 disabled			
1	0	CLK enabled	XTAL0 and XTAL1 disabled			
1	1	CLK enabled	XTAL0 and XTAL1 disabled			

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V₂₂ 4.6V

Inputs, $V_{_{DD}}$ -0.5 V to $V_{_{DD}}$ + 0.5 V

Outputs, V_{o} -0.5V to V_{doo} + 0.5V

Package Thermal Impedance, θ_{1,4} 87.8°C/W (0 mps)

Storage Temperature, T_{stg} -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $V_{_{DD}} = V_{_{DDO}} = 3.3V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
	Dower Cupply Current	No Load & XTALx selected			30	mA
Power	Power Supply Current	No Load & CLK selected			1	mA
I _{DDO}	Output Supply Current	No Load & CLK selected			1	mA

Table 4B. Power Supply DC Characteristics, $V_{_{DD}} = 3.3V \pm 5\%$, $V_{_{DDO}} = 2.5V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
	Power Supply Current	No Load & XTALx selected			30	mA
DD	Power Supply Current	No Load & CLK selected			1	mA
 DDO	Output Supply Current	No Load & CLK selected			1	mA

Table 4C. Power Supply DC Characteristics, $V_{dd} = 3.3V \pm 5\%$, $V_{ddo} = 1.8V \pm 0.2V$, Ta = -40°C to 85°C to 85°C to 85°C.

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		1.6	1.8	2.0	V
	Power Supply Current	No Load & XTALx selected			30	mA
DD	Power Supply Current	No Load & CLK selected			1	mA
I _{DDO}	Output Supply Current	No Load & CLK selected			1	mA

Table 4D. Power Supply DC Characteristics, $V_{_{DD}} = V_{_{DDO}} = 2.5V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V	Core Supply Voltage		2.375	2.5	2.625	V
V	Output Supply Voltage		2.375	2.5	2.625	V
	Dawar Cupply Current	No Load & XTALx selected			20	mA
DD	Power Supply Current	No Load & CLK selected			1	mA
I _{DDO}	Output Supply Current	No Load & CLK selected			1	mA

Table 4E. Power Supply DC Characteristics, $V_{dd} = 2.5V \pm 5\%$, $V_{ddd} = 1.8V \pm 0.2V$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDO}	Output Supply Voltage		1.6	1.8	2.0	V
	Power Cupply Current	No Load & XTALx selected			20	mA
DD	Power Supply Current	No Load & CLK selected			1	mA
 DDO	Output Supply Current	No Load & CLK selected			1	mA

Table 4F. DC Characteristics, TA = -40°C TO 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
\/	Input High Voltage		$V_{_{DD}} = 3.3V \pm 5\%$	2.2		V _{DD} + 0.3	V
V _{IH}	Imput riigir voitage	3	$V_{DD} = 2.5V \pm 5\%$	1.6		V _{DD} + 0.3	V
\/	Input Low Voltage		$V_{DD} = 3.3V \pm 5\%$	-0.3		1.3	V
V _{IL}	Imput Low Voltage	•	$V_{_{DD}} = 2.5V \pm 5\%$	-0.3		0.9	V
I _{IH}	Input	CLK, CLK_ SEL[0:1]	$V_{DD} = 3.3 \text{V or } 2.5 \text{V} \pm 5\%$			150	μΑ
"	High Current	OE	$V_{DD} = 3.3 \text{V or } 2.5 \text{V} \pm 5\%$			5	μΑ
I _{IL}	Input	CLK, CLK_ SEL[0:1]	$V_{DD} = 3.3 \text{V or } 2.5 \text{V} \pm 5\%$	-5			μA
	Low Current	OE	$V_{DD} = 3.3 \text{V or } 2.5 \text{V} \pm 5\%$	-150			μA
			$V_{_{\rm DDO}} = 3.3V \pm 5\%; \text{ NOTE 1}$	2.6			V
V _{OH}	Output HighVoltag	ge	$V_{_{\rm DDO}} = 2.5 \text{V} \pm 5\%; \text{ NOTE 1}$	1.8			V
			$V_{DDO} = 1.8V \pm 0.2V; NOTE 1$	1.2			V
	Output Low Voltage		$V_{_{\rm DDO}} = 3.3 \text{V} \pm 5\%; \text{ NOTE 1}$			0.6	V
V _{oL}			$V_{_{\rm DDO}} = 2.5 \text{V} \pm 5\%; \text{ NOTE 1}$			0.5	V
			$V_{DDO} = 1.8V \pm 0.2V$; NOTE 1			0.4	V

NOTE 1: Outputs terminated with 50Ω to $V_{_{DDO}}/2$. See Parameter Measurement section, "Load Test Circuit" diagrams.

TABLE 5. CRYSTAL CHARACTERISTICS

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation / cut		Fu	ındamenta	ıl	
Frequency		10		40	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW

Table 6A. AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
,	Output Fre-	w/external XTAL		10		40	MHz
MAX	quency	w/external CLK				200	MHz
tp _{LH}	Propagation I NOTE 1	Delay, Low-to-High;		1.4	2.0	2.6	ns
tsk(o)	Output Skew; NOTE 2					70	ps
tsk(pp)	Part-to-Part Skew; NOTE 2, 3					700	ps
<i>t</i> jit(Ø)	RMS Phase	litter, Random; NOTE 4	25MHz XTAL, (12kHz-10MHz)		0.39		ps
t _R / t _F	Output Rise/F	all Time	20% to 80%	200		800	ps
odc	Output	w/external XTAL	f ≤ 38.88MHz	45		55	%
louc	Duty Cycle w/external CLK		f ≤ 133MHz	47		53	%
t _{en}	Output Enable Time; NOTE 5					10	ns
t	Output Disabl	le Time; NOTE 5				10	ns

NOTE 1: Measured from $V_{_{DD}}/2$ of the input to $V_{_{DDO}}/2$ of the output. NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and

with equal load conditions. Using the same type of input on each device, the output is measured at V 200/2.

NOTE 4: Phase jitter is dependent on the input source used.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Table 6B. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f	Output Fre-	w/external XTAL		10		40	MHz
MAX	quency	w/external CLK				200	MHz
tp _{LH}	Propagation NOTE 1	Delay, Low-to-High;		1.5	2.1	2.7	ns
tsk(o)	Output Skew	; NOTE 2				70	ps
tsk(pp)	Part-to-Part Skew; NOTE 2, 3					700	ps
<i>t</i> jit(Ø)	RMS Phase Jitter, Random; NOTE 4		25MHz XTAL, (12kHz-10MHz)		0.42		ps
t _R / t _F	Output Rise/Fall Time		20% to 80%	200		800	ps
odc	Output	w/external XTAL	f ≤ 38.88MHz	45		55	%
louc	Duty Cycle	w/external CLK	f ≤ 133MHz	47		53	%
t _{EN}	Output Enab	le Time; NOTE 5				10	ns
t	Output Disab	ole Time; NOTE 5				10	ns

NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DD}/2$ of the output.

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and

with equal load conditions. Using the same type of input on each device, the output is measured at $V_{ppo}/2$.

NOTE 4: Phase jitter is dependent on the input source used.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Table 6C. AC Characteristics, $V_{dd} = 3.3V \pm 5\%$, $V_{ddd} = 1.8V \pm 0.2V$, Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f	Output Fre-	w/external XTAL		10		40	MHz
MAX	quency	w/external CLK				200	MHz
tp _{LH}	Propagation NOTE 1	Delay, Low-to-High;		1.6	2.4	3.2	ns
tsk(o)	Output Skew	; NOTE 2				70	ps
tsk(pp)	Part-to-Part Skew; NOTE 2, 3					700	ps
<i>t</i> jit(Ø)	RMS Phase Jitter, Random; NOTE 4		25MHz XTAL, (12kHz-10MHz)		0.43		ps
t _r / t _r	Output Rise/	Fall Time	20% to 80%	200		800	ps
odc	Output	w/external XTAL	f ≤ 38.88MHz	45		55	%
louc	Duty Cycle	w/external CLK	<i>f</i> ≤ 133MHz	47		53	%
t _{en}	Output Enab	le Time; NOTE 5				10	ns
t	Output Disab	ole Time; NOTE 5				10	ns

NOTE 1: Measured from V_{DD}/2 of the input to V_{DDD}/2 of the output. NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and

with equal load conditions. Using the same type of input on each device, the output is measured at $V_{_{
m DDO}}/2$.

NOTE 4: Phase jitter is dependent on the input source used.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Table 6D. AC Characteristics, $V_{DD} = V_{DDD} = 2.5V \pm 5\%$, $TA = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Fre-	w/external XTAL		10		40	MHz
	quency	w/external CLK				200	MHz
tp _{LH}	Propagation NOTE 1	Delay, Low-to-High;		1.7	2.4	3.1	ns
tsk(o)	Output Skew	; NOTE 2				70	ps
tsk(pp)	Part-to-Part Skew; NOTE 2, 3					700	ps
<i>t</i> jit(Ø)	RMS Phase Jitter, Random; NOTE 4		25MHz XTAL, (12kHz-10MHz)		0.44		ps
t _R / t _F	Output Rise/Fall Time		20% to 80%	200		800	ps
odc	Output	w/external XTAL	f ≤ 38.88MHz	45		55	%
louc	Duty Cycle	w/external CLK	f ≤ 133MHz	47		53	%
t _{EN}	Output Enab	le Time; NOTE 5				10	ns
t	Output Disab	ole Time; NOTE 5				10	ns

NOTE 1: Measured from $V_{_{DD}}/2$ of the input to $V_{_{DDO}}/2$ of the output.

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and

with equal load conditions. Using the same type of input on each device, the output is measured at $V_{_{
m DDO}}/2$.

NOTE 4: Phase jitter is dependent on the input source used.

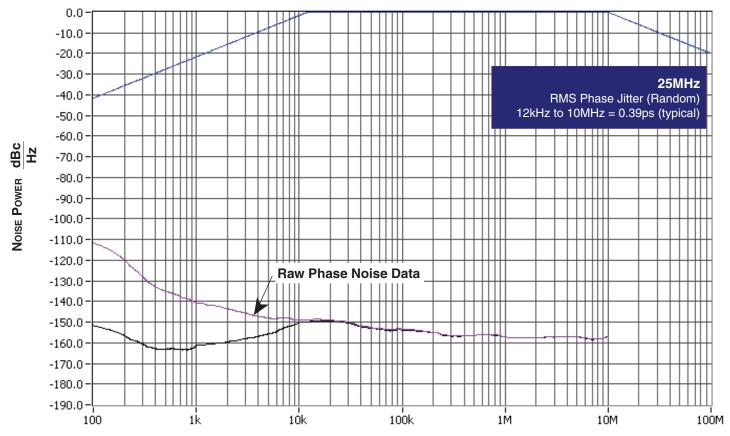
NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Table 6E. AC Characteristics, $V_{dd} = 2.5V \pm 5\%$, $V_{dd} = 1.8V \pm 0.2V$, Ta = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
£	Output Fre-	w/external XTAL		10		40	MHz
MAX	quency	w/external CLK				200	MHz
tp _{LH}	Propagation NOTE 1	Delay, Low-to-High;		1.7	2.6	3.5	ns
tsk(o)	Output Skew	; NOTE 2				70	ps
tsk(pp)	Part-to-Part Skew; NOTE 2, 3					700	ps
<i>t</i> jit(Ø)	RMS Phase Jitter, Random; NOTE 4		25MHz XTAL, (12kHz-10MHz)		0.37		ps
t _R / t _F	Output Rise/Fall Time		20% to 80%	200		800	ps
odc	Output	w/external XTAL	f ≤ 38.88MHz	45		55	%
louc	Duty Cycle	w/external CLK	<i>f</i> ≤ 133MHz	47		53	%
t _{EN}	Output Enab	le Time; NOTE 5				10	ns
t	Output Disab	ole Time; NOTE 5				10	ns

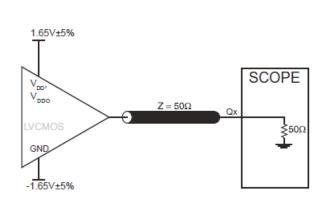
NOTE 1: Measured from $V_{_{DD}}/2$ of the input to $V_{_{DDO}}/2$ of the output. NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

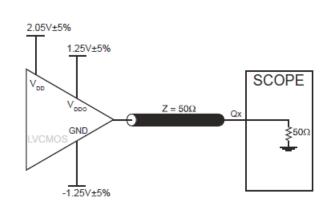
NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and


with equal load conditions. Using the same type of input on each device, the output is measured at $V_{ppo}/2$.

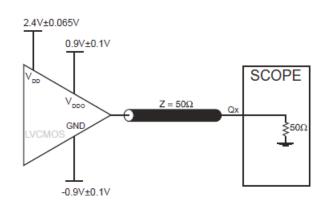
NOTE 4: Phase jitter is dependent on the input source used.

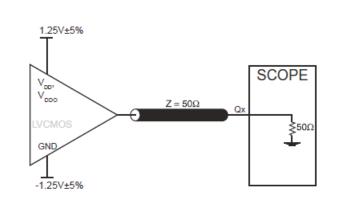
NOTE 5: These parameters are guaranteed by characterization. Not tested in production.



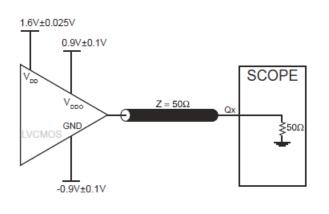


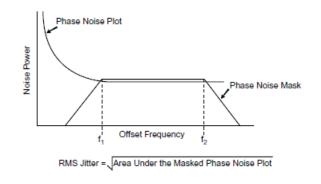
OFFSET FREQUENCY (Hz)


PARAMETER MEASUREMENT INFORMATION



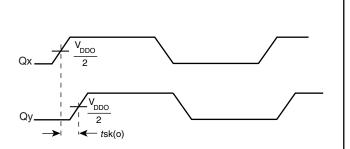
3.3V Core/3.3V OUTPUT LOAD AC TEST CIRCUIT

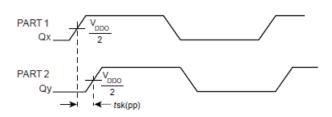

3.3V Core/2.5V OUTPUT LOAD ACTEST CIRCUIT



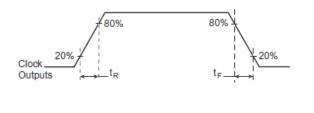
3.3V CORE/1.8V OUTPUT LOAD AC TEST CIRCUIT

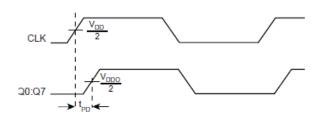
2.5V CORE/2.5V OUTPUT LOAD ACTEST CIRCUIT




2.5V CORE/1.8V OUTPUT LOAD AC TEST CIRCUIT

RMS PHASE JITTER


PARAMETER MEASUREMENT INFORMATION, CONTINUED



OUTPUT SKEW

PART-TO-PART SKEW

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

OUTPUT RISE/FALL TIME

PROPAGATION DELAY

APPLICATION INFORMATION

CRYSTAL INPUT INTERFACE

Figure 1 shows an example of 83908I-02 crystal interface with a parallel resonant crystal. The frequency accuracy can be fine tuned by adjusting the C1 and C2 values. For a parallel crystal with loading capacitance CL = 18pF, we suggest C1 and C2 = 15pF to start with. These values may be slightly fine tuned further to optimize the

frequency accuracy for different board layouts. Slightly increasing the C1 and C2 values will slightly reduce the frequency. Slightly decreasing the C1 and C2 values will slightly increase the frequency. For the oscillator circuit below, R1 can be used, but is not required. For new designs, it is recommended that R1 not be used.

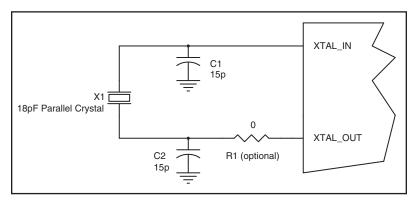


FIGURE 1. Crystal Input Interface

LVCMOS TO XTAL INTERFACE

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 2*. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS inputs, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output

impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω .

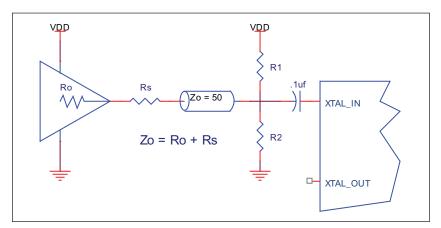


FIGURE 2. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

INPUTS:

CLK INPUT

For applications not requiring the use of the clock input, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the CLK input to ground.

CRYSTAL INPUTS

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT should be tied to ground. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from XTAL_IN to ground and from XTAL_OUT to ground.

LVCMOS CONTROL PINS

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

OUTPUTS:

LVCMOS OUTPUTS

All unused LVCMOS output can be left floating. There should be no trace attached.

RELIABILITY INFORMATION

Table 7. $\theta_{_{JA}} vs.$ Air Flow Table for 24 Lead TSSOP

θ_{JA} by Velocity (Meters per Second)

Multi-Layer PCB, JEDEC Standard Test Boards

0 87.8°C/W **1** 83.5°C/W **2.5** 81.3°C/W

TRANSISTOR COUNT

The transistor count for 83908I-02 is: 277

PACKAGE OUTLINE AND DIMENSIONS

PACKAGE OUTLINE - G SUFFIX FOR 24 LEAD TSSOP

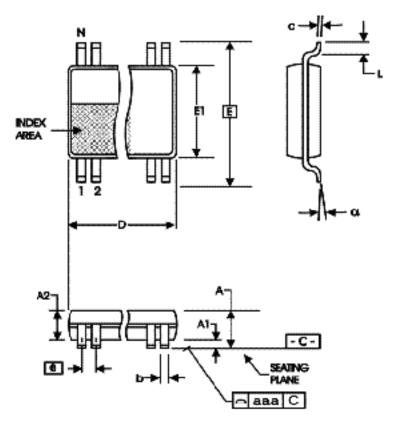


TABLE 8. PACKAGE DIMENSIONS

OVER OL	Millin	neters	
SYMBOL	Minimum	Maximum	
N	24		
А		1.20	
A1	0.05	0.15	
A2	0.80	1.05	
b	0.19	0.30	
С	0.09	0.20	
D	7.70	7.90	
E	6.40 BASIC		
E1	4.30	4.50	
е	0.65 BASIC		
L	0.45	0.75	
α	0°	8°	
aaa		0.10	

REFERENCE DOCUMENT: JEDEC Publication 95, MO-153

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature	
83908AGI-02LF	ICS83908AI02L	24 lead "Lead Free" TSSOP	Tube	-40°C to +85°C	
83908AGI-02LFT	ICS83908AI02L	24 lead "Lead Free" TSSOP	Tape and Reel	-40°C to +85°C	

REVISION HISTORY SHEET

Rev	Table	Page	Description of Change	Date
А	Т9	14	Ordering Information - removed leaded devices.	3/27/15
			Updated datasheet format.	3/21/13
А	T9		Ordering Information - Deleted LF note below table. Updated header and footer	3/17/16

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.